Crowdsourcing Bias in
Sentiment Analysis

Authors: Ben Choi, Ricky Noll

Department of Computer Science, Washington
University, St. Louis, Missouri 63130

Advisor/Professor: Chien-Ju Ho

1 Author Information
1. Ben Choi (benjaminchoi - 443821)

2. Ricky Noll (rickynoll - 443896)

2 Introduction

2.1 Original Project Proposal

To recap our original project proposal,
we planned on creating a sentiment analy-
sis algorithm that would ultimately separate
tweets into one of three categories: positive,
neutral, or negative. To do so, we wanted
to build off of the work of Recognizing Con-
textual Polarity in Phrase-Level Sentiment
Analysis by Wilson, Wiebe, and Hoffmann
[1] (henceforth referred to as paper 1) and
Twitter as a Corpus for Sentiment Analysis
and Opinion Mining by Pak and Paroubek
[2] (henceforth referred to as paper 2). The
two papers take very distinct approaches to
creating a sentiment analyzer and we wanted
to take concepts from both papers to create
our own sentiment analysis algorithm. In the
spirit of crowdsourcing, we also wanted to
make our algorithm more robust by adding
some “human in the loop” adjustments. More
specifically, instead of classifying tweets out-
right, we wanted to run a regression to as-
sign tweets values from a range of -1 to 1,
allowing us to more closely examine tweets
for which the algorithm predicted incorrectly
or just barely predicted correctly.

2.2 Project Pivots

Originally, our plan was to use the features
described by paper 1 and incorporate the so-
cial media speech elements detailed by pa-
per 2 to produce a sentiment analyzer that
would nicely reconcile the ideas of the two
papers for the purposes of analyzing tweet
sentiments. As we continued on, however,
we began to realize that the authors of paper
1 only uploaded one of about three lexicons
they described using in their paper. Without
access to these other dictionaries, it became
nearly impossible (without a lot of manual
work and tagging, on our part) to implement
a sentiment analyzer in the way we originally
proposed. Thus, we pivoted to more closely
replicate paper 2 while still trying to incor-
porate elements of the work in paper 1. In
doing so, we built a fairly robust sentiment
classifier, but one that ran into certain chal-
lenges inherent in working with crowdsourced
data. Ultimately, our project focuses on these
challenges and the various ways one can over-
come them (and the pros and cons of these
approaches).

3 Data

Originally, we had intended on scraping
Twitter ourselves, labeling tweets by hand,
and then training our algorithm on this la-
beled dataset. Unfortunately, this ended
up being such a huge task for just the two
of us that it became infeasible to do with-
out crowdsourcing it through AMT (some-
thing we did not sign up to do, in time).
As a result, we ended up using a dataset
from kaggle, which used crowdsourcing to la-
bel positive, neutral, and negative tweets re-
garding airlines. As the labels were crowd-
sourced, we do not actually know the gold la-
bel (how the tweeter actually felt) for nearly
all tweets. However, each label did come with
a confidence value ranging from 0 to 1 which
shows what percentage of total labelers la-

beled the tweet with its final label. This be-
came the dataset we used for the duration of
our project. [3]

The data came with 15 features, in-
cluding certain features we did not need
like timezone and retweet count. We fil-
tered these to just 3: airline-sentiment,
airline-sentiment-confidence, and text.

4 Data Analysis

4.1 Classifier Choice

We ended up using a linear kernel SVM
which analyzed a bags of words representa-
tion of tweets. Although we focused on the
3-way classification between positive, neu-
tral, and negative, we also experimented
with binary classifications. More specif-
ically, we trained and tested a positive-
negative classifier and a polar-neutral classi-
fier. The positive-negative classifier simply
distinguishes between positive and negative
tweets while the polar-neutral classifier dis-
tinguishes between polar (either positive or
negative) and neutral tweets.

4.2 SVM Choice

Research in the field of text analysis (in-
cluding papers 1 and 2) traditionally use ei-
ther a Multinomial Naive-Bayes or a SVM to
create sentiment analyzers, which led us to
try both types of classifiers in our project.
We ultimately decided to go with the SVM
because it yielded a better testing accuracy
in our trials.

4.3 Linear Kernel Choice

Once we settled on the choice of a SVM,
we then tested a linear kernel, a polynomial
kernel, a RBF kernel, and a sigmoidal kernel.
Once again, the linear kernel yielded the best
results and thus we stuck with it for the rest
of our project.

4.4 Bags of Words Choice

When making the decision on how to
turn the tweet texts into feature vectors, we
considered 2-grams, 3-grams, part-of-speech
(POS) frequency, and a bags of words rep-
resentation. Paper 1 explicitly uses 3-grams
when building its classifier while paper 2 rec-
ommends using 2-grams. Both papers also
use POS frequency, to some capacity. How-
ever, we found that the bags of words repre-
sentation yielded a higher accuracy than ei-
ther 2-grams or 3-grams. Additionally, we
ultimately decided not to focus on POS fre-
quency as it only proved useful in the polar-
neutral classification (and less useful in the
overall 3-way classification).

5 Classifier Results

H Classifier Train Acc Test Acc H
textblob — 0.33
VADER — 0.54
SVM all 0.91 0.80

SVM pos-neg 0.97 0.93
SVM pol-neut 0.92 0.85

Figure 1: Different Classifier Training and Testing
Accuracies

The table above presents training and test-
ing accuracies for the various sentiment anal-
ysis tools we used on the data. As you can
see, the existing sentiment analysis libraries
available in Python (textblob and vaderSen-
timent) did not perform too well on our task.
In fact, the textblob package did no better
than random guessing. vaderSentiment fared
a bit better, but still isn’t particularly accu-
rate. Our SVM performed admirably in com-
parison, with training and testing accuracies
in the 80’s to 90’s range across all of the var-
ious classification tasks.

5.1 FError Distribution

Although we achieved decent performance
with our classifier, we were curious what
types of errors our classifier made most fre-
quently. As a result, we looked into the distri-
bution of the classifier’s errors, which is sum-
marized in Figure 2.

true 0, predicted 1 true 0, predicted -1 true 1, predicted -1

0.09 047 018

true 1, predicted O true -1, predicted 1

true -1, predicted 0

0.08 0.04 013

Figure 2: SVM all Classification Error Distribution

You'll notice our classifier makes almost
half of all its errors on a single error case:
when the tweet is ground truth neutral but
it predicts the sentiment is negative. In fact,
the classifier seems to overpredict tweets as
negative in general, as the next most fre-
quent error case is when the classifier pre-
dicts a tweet is negative when it is actually
positive. While we were originally puzzled by
this behavior, taking a closer look at the dis-
tribution of the data set provided some ex-
planations. We found that the data is 16%
positive tweets, 21% neutral tweets, and 63%
negative tweets. This means we have 3 times
the negative tweets as we do either positive
or neutral, leading our classifier to overpre-
dict negatively.

5.2 Error Confidence

General data
1
neral_data_confidences

Classifier errors

Figure 3: Set Diagram of User Sentiment

In addition to the types of errors our classi-
fier made, we were also curious about whether
our classifier struggled with the same tweets
that humans struggled with. As a result, we
examined the confidence values of the data
points our SVM misclassified and compared
them to the confidence values of the data set
as a whole. We found that the median con-
fidence value of the whole data set is 1.00,
meaning the crowd unanimously agreed on
the label of most of the tweets. However, the
median confidence value of the classifier er-
rors ended up being 0.68, implying our clas-
sifier struggled with the same tweets that hu-
mans also struggled with (these findings are
summarized in Figure 3). While this is a
promising sign for the performance of our al-
gorithm, this highlights a key issue: how can
we expect our classifier to correctly classify
tweets that even a group of humans struggled
to classify?

6 Practical Challenges

6.1 Effect of Humans on Data Collec-
tion

Total User Sentiment
o
Correctly Classified Tweets

Figure 4: Set Diagram of User Sentiment

Humans-in-the-loop affected our project’s
data collection in two distinct ways: 1) the
source of our data is inherently crowdsourced
(being a series of tweets scraped from Twit-
ter) and 2) the sentiment labels were inferred
by another crowd of people. We see there are
two layers of abstraction between the data we
collected and the actual total sentiment of the

crowd. Think of the layers as filters — ”I'm
only going to grab the sentiments of people
that tweet at airlines. Then, of those senti-
ments I'll only be able to use sentiments that
could be confidently inferred by the crowd
based on the text of the tweet.” This rela-
tionship is shown by the diagram in Figure
4, where the blue set A contains the true dis-
tribution of all user sentiments. We'd like
to sample this distribution directly. How-
ever, we only have access to the red set B,
which is a distribution of the sentiments of
the people that tweet at airlines. We've in-
troduced sampling bias here by only selecting
the subset of sentiments of people that decide
to tweet at airlines, which skews heavily neg-
ative. Additionally, the only data that’s use-
ful to our classifier are the correctly inferred
sentiments, which is an even smaller set rep-
resented by yellow set C. The second problem
of mislabelling tweets isn’t too bad of a prob-
lem, so expanding yellow set C to completely
fill out B is mostly a label aggregation prob-
lem. However, the first problem of expanding
set B to cover set A is much more intractable.

The intractable element of the problem
stems from very natural human behavior: it
makes sense that people are more likely to
tweet an airline about a negative experience
than a positive one, and it’s also more likely
that people are tweeting a logistical question
than praising a flight. Because the data we
collected wasn’t balanced, the predictions of
the algorithm were skewed negative. These
are the kinds of things you need to think
about when collecting data. If you don’t,
even without meaning to, you can end up cre-
ating a biased algorithm. While this may not
seem like a huge problem in the context of
analyzing the sentiment of airline tweets, it
can become a huge problem if you're a bank
trying to create an algorithm that does not
discriminate on the basis for race when as-
signing loans.

6.2 Potential Remedies

We are going to outline two paths one could
investigate to attempt to fix this problem.
The two options are to throw out data from
the over-represented class or generate data for
the underrepresented class.

6.2.1 Throw Out Over-represented Data

Although a generally bad practice, one way
to overcome the skew of the collected data is
to even out the proportions of the data by
tossing out some data points from the over-
represented class. If we have proportions of
0.16,0.21, 0.63 for positive, neutral, and nega-
tive respectively, we can just toss out % of the
negative tweets to balance it out. Although
this tends to lead to worse performance over-
all, it actually didn’t affect the testing ac-
curacy in our case (staying at around 0.80).
However, running this chopped classifier on
the whole data set leads to an unsurprising
issue: the chopped classifier now has a ten-
dency to overpredict things as neutral when
they are actually negative, as shown in Fig-
ure 5. So, unfortunately, this didn’t help us
fix our problem.

true 0, predicted 1 true 0, predicted -1 true 1, predicted -1

012 017

0.03

true 1, predicted 0 true -1, predicted 1 true -1, predicted 0

0.03 0.20 044

Figure 5: Set Diagram of User Sentiment

6.2.2 Generate
Data

Extra Underrepresented

On the other side of the coin, we can in-
stead try to generate more positive and neu-
tral data to make the proportions match.
One possible way to do this is with the use
of Generative Adversarial Networks (GANs),
which generate extra fake examples based on
what’s available in the data set. Although

we did not attempt to do this due to time
constraints, note that this method has a ten-
dency to introduce extra noise into the data
set, possibly lowering the classification accu-
racy. GANs could also skew your classifica-
tion, because the fake examples will all be
based on the small subset of original exam-
ples from the underrepresented class.

6.3 Future Work

The two remedies represent different sides
of the same data coin: we can try raising the
underrepresented classes up or bring the over-
represented classes down. If we had more
time to pursue this project, we would be in-
terested in actually using GANs to see how
they might fare. We would also be interested
in how the use of various label aggregation
methods and additional polling for low confi-
dence tweets might affect the results.

7 Conclusion

This project attempts to communicate some
general problems one may run into using
crowdsourcing in supervised machine learn-
ing, learned from our own experiences creat-
ing a sentiment analyzer for Twitter data.

If we had to choose one main takeaway
from this project, it would be to approach
the data collection process with caution and
a problem-solving mindset. Two huge points
to consider for a person collecting and work-
ing with corwdsourced data are:

1. Designing data collection methods
that capture data points as close to the
ground truth distribution as possible, so
as to not introduce bias.

2. Designing good label aggregation
methods to get the most efficient use of
the data collected, so all of it can be ef-
fective in training your algorithm.

Keeping these two things in mind is es-
sential to the art of working with data, and

we hope their importance was highlighted
through this specific example.

References

[1] Theresa Wilson, Janyce Wiebe, and Paul Hoff-
mann. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the
Conference on Human Language Technology and
Empirical Methods in Natural Language Process-
ing, HLT ’05, pages 347-354, Stroudsburg, PA,
USA, 2005. Association for Computational Lin-
guistics.

[2] Alexander Pak and Patrick Paroubek. Twitter as
a corpus for sentiment analysis and opinion min-

ing. In LREC, 2010.

[3] Twitter u.s. airline sentiment. Crowdflower, 2015.

